Muppet: MapReduce-Style Processing of Fast Data
نویسندگان
چکیده
MapReduce has emerged as a popular method to process big data. In the past few years, however, not just big data, but fast data has also exploded in volume and availability. Examples of such data include sensor data streams, the Twitter Firehose, and Facebook updates. Numerous applications must process fast data. Can we provide a MapReduce-style framework so that developers can quickly write such applications and execute them over a cluster of machines, to achieve low latency and high scalability? In this paper we report on our investigation of this question, as carried out at Kosmix and WalmartLabs. We describe MapUpdate, a framework like MapReduce, but specifically developed for fast data. We describe Muppet, our implementation of MapUpdate. Throughout the description we highlight the key challenges, argue why MapReduce is not well suited to address them, and briefly describe our current solutions. Finally, we describe our experience and lessons learned with Muppet, which has been used extensively at Kosmix and WalmartLabs to power a broad range of applications in social media and e-commerce.
منابع مشابه
Cloud Computing Technology Algorithms Capabilities in Managing and Processing Big Data in Business Organizations: MapReduce, Hadoop, Parallel Programming
The objective of this study is to verify the importance of the capabilities of cloud computing services in managing and analyzing big data in business organizations because the rapid development in the use of information technology in general and network technology in particular, has led to the trend of many organizations to make their applications available for use via electronic platforms hos...
متن کاملA Survey On Distributed Video Management Cloud Platform Using Hadoop
This paper presents the literature review on distributed video management cloud platform using Hadoop. Due to complexities of big video data management, such as immense processing of large amount of video data to do a video summary, it is challenging to effectively and efficiently store and process these video data in a user friendly way. Based on the parallel processing and flexible storage ca...
متن کاملAdaptive Dynamic Data Placement Algorithm for Hadoop in Heterogeneous Environments
Hadoop MapReduce framework is an important distributed processing model for large-scale data intensive applications. The current Hadoop and the existing Hadoop distributed file system’s rack-aware data placement strategy in MapReduce in the homogeneous Hadoop cluster assume that each node in a cluster has the same computing capacity and a same workload is assigned to each node. Default Hadoop d...
متن کاملFast Approximate Attribute Reduction with MapReduce
Massive data processing is a challenging problem in the age of big data. Traditional attribute reduction algorithms are generally time-consuming when facing massive data. For fast processing, we introduce a parallel fast approximate attribute reduction algorithm with MapReduce. We divide the original data into many small blocks, and use reduction algorithm for each block. The reduction algorith...
متن کاملEffective Spatial Data Partitioning for Scalable Query Processing
Recently, MapReduce based spatial query systems have emerged as a cost effective and scalable solution to large scale spatial data processing and analytics. MapReduce based systems achieve massive scalability by partitioning the data and running query tasks on those partitions in parallel. Therefore, effective data partitioning is critical for task parallelization, load balancing, and directly ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- PVLDB
دوره 5 شماره
صفحات -
تاریخ انتشار 2012